860 research outputs found

    Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme

    Get PDF
    A Newmark-diffusive scheme is presented for the time-domain solution of dynamic systems containing fractional derivatives. This scheme combines a classical Newmark time-integration method used to solve second-order mechanical systems (obtained for example after finite element discretization), with a diffusive representation based on the transformation of the fractional operator into a diagonal system of linear differential equations, which can be seen as internal memory variables. The focus is given on the algorithm implementation into a finite element framework, the strategies for choosing diffusive parameters, and applications to beam structures with a fractional Zener model

    Non-classical Photon Statistics For Two-mode Optical Fields

    Get PDF
    The non-classical property of subpoissonian photon statistics is extended from one to two-mode electromagnetic fields, incorporating the physically motivated property of invariance under passive unitary transformations. Applications to squeezed coherent states, squeezed thermal states, and superposition of coherent states are given. Dependences of extent of non-classical behaviour on the independent squeezing parameters are graphically displayed.Comment: 15 pages, RevTex, 5 figures, available by sending email to [email protected]

    Topological complexity of the relative closure of a semi-Pfaffian couple

    Full text link
    Gabrielov introduced the notion of relative closure of a Pfaffian couple as an alternative construction of the o-minimal structure generated by Khovanskii's Pfaffian functions. In this paper, use the notion of format (or complexity) of a Pfaffian couple to derive explicit upper-bounds for the homology of its relative closure. Keywords: Pfaffian functions, fewnomials, o-minimal structures, Betti numbers.Comment: 12 pages, 1 figure. v3: Proofs and bounds have been slightly improve

    Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol

    Get PDF
    © 2017 The Author(s). Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-ΰ B translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-ΰ B signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-k B translocation into the nucleus that resulted in high NF-k B transcription activity. The overall magnitude of NF-k B transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-k B translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-k B transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-k B transcription factor

    Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring

    Full text link
    Photodetachment thermometry on a beam of OH^- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH^- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX supplement with 12 pages, 3 figures and 3 tables. This article has been accepted by Physical Review Letter

    Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms

    Get PDF
    One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and release. We have developed a novel dual material hot-melt inkjet 3D printing system which allows for precisely controlled multi-material solvent free inkjet printing. This reduces the need for time-consuming exchanges of printable inks and expensive post processing steps. With this printer, we show the potential for design of printed dosage forms for tailored drug release, including single and multi-material complex 3D patterns with defined localised drug loading where a drug-free ink is used as a release-retarding barrier. For this, we used Compritol HD5 ATO (matrix material) and Fenofibrate (model drug) to prepare both drug-free and drug-loaded inks with drug concentrations varying between 5% and 30% (w/w). The printed constructs demonstrated the required physical properties and displayed immediate, extended, delayed and pulsatile drug release depending on drug localisation inside of the printed formulations. For the first time, this paper demonstrates that a commonly used pharmaceutical lipid, Compritol HD5 ATO, can be printed via hot-melt inkjet printing as single ink material, or in combination with a drug, without the need for additional solvents. Concurrently, this paper demonstrates the capabilities of dual material hot-melt inkjet 3D printing system to produce multi-material personalised solid dosage forms

    SPS’ Digest: the Swiss Proteomics Society selection of proteomics articles

    Get PDF
    Despite the consolidation of the specialized proteomics literature around a few established journals, such as Proteomics, Molecular and Cellular Proteomics, and the Journal of Proteome Research, a lot of information is still spread in many different publications from different fields, such as analytical sciences, MS, bioinformatics, etc. The purpose of SPS’ Digest is to gather a selection of proteomics articles, to categorize them, and to make the list available on a periodic basis through a web page and email alerts

    The Real Symplectic Groups in Quantum Mechanics and Optics

    Get PDF
    text of abstract (We present a utilitarian review of the family of matrix groups Sp(2n,)Sp(2n,\Re), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n,)Sp(2n,\Re). Global decomposition theorems, interesting subgroups and their generators are described. Turning to nn-mode quantum systems, we define and study their variance matrices in general states, the implications of the Heisenberg uncertainty principles, and develop a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n,)Sp(2n,\Re) action are delineated.)Comment: Review article 43 pages, revtex, no figures, replaced because somefonts were giving problem in autometic ps generatio
    corecore